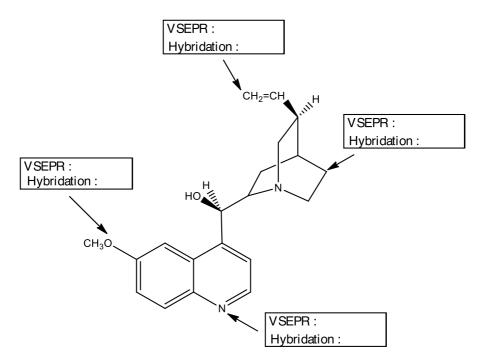
Licence Sciences de la Vie et de la Terre – L2 – Semestre 3 – UE2

Examen de Chimie Organique


Vendredi 10 janvier 2020 – 14h-16h

L'utilisation du téléphone portable est interdite. Aucun document n'est autorisé.

Numéro d'anonymat:

Exercice 1

La **quinine** est un alcaloïde naturel qui est antipyrétique, analgésique et, surtout, antipaludique. Extraite d'un arbuste originaire d'Amérique du Sud connu au dix-huitième siècle sous le nom de quinquina, elle était utilisée pour la prévention du paludisme (ou « malaria ») avant d'être supplantée par ses dérivés.

- 1. Indiquer sur le dessin tous les doublets non-liants présents dans la quinine.
- 2. Indiquer le type selon les règles de Gillepsie (VSEPR) et l'hybridation des quatre atomes pointés par une flèche.
- 3. Donner le nom d'au moins trois fonctions différentes présentes dans la molécule.

-

4. *Préciser sur le dessin* la configuration absolue du carbone asymétrique portant le groupe éthényle (vinyle) et celle du carbone portant le groupe hydroxyle. Justifier votre réponse en indiquant l'ordre de priorité des substituants.

<u>Rappel</u>: numéro atomique (Z): H:1; C:6; N:7; O:8

Les molécules A et B suivant	tes sont données s	ous leur forme acide:	
A : c	yclohexanol (C ₆ F	\mathbf{I}_{11} -OH); \mathbf{B} : phénol	(C ₆ H ₅ -OH)
1. Écrire pour chacune des m	olécules A et B l'	équilibre acido-basique	correspondant:
2. Indiquer le composé qui e effet(s) électronique(s). Attrib			
Indiquer les deux types d'ef	fets électroniques	qui existent :	
-			
- Composé le plus acide (coch	per la honne rénor	nse): \square A \square B	
Justification de la stabilisation	on de la base conj	uguee .	
Attribution des pKa:	A :	B :	

i) (CH ₃) ₂ C=CH-CH ₃ (D) ii) C ₆ H ₅ -CH=C(CH ₃) ₂ (E)				
1. Dans chaque cas, développer le mécanisme de la réaction. Donner les formules semi- développées des produits obtenus et indiquer le produit majoritaire en justifiant sa formation.				
i)				
ii)				
2. Donner le type de la réaction (cocher la bonne réponse) :				
\square addition \square substitution \square élimination				
3- Cette réaction est-elle régiosélective ? Si oui, Pourquoi ?				

On considère la réaction d'une molécule de bromure d'hydrogène (HBr) et d'une molécule de :

Les phéromones sont des substances naturelles qui sont essentielles pour la communication entre les insectes. La phéromone 3 qui permet le marquage des pistes par une variété de termites, a été synthétisée à partir de 1 selon le schéma ci-dessous.

NB: On rappelle que l'amidure de sodium, NaNH₂, est une base forte (pKa = 36).

- 1. Donner la structure des composés A à C, et E à H.
- 2. Indiquer le réactif nécessaire à la transformation de C en D.

A	В	С
	_	
E	F	G
Н	Réactif nécessaire pour C -> D	

3. Ecrire le mécanisme de la réaction $\mathbf{A} \rightarrow \mathbf{B}$.
4. Expliquer pourquoi le composé D , de stéréochimie E, est l'isomère majoritaire.
5. Sachant que l'équation de vitesse de la réaction (E -> F) est de la forme v = k[E] ¹ [1] ¹ , nommer précisément le mécanisme mis en jeu lors de cette réaction.
6. Comment s'appelle la fonction présente dans le composé 2 ?
7. Lors de la dernière étape, donner la structure du produit qui aurait été obtenu si le catalyseur désactivé (= catalyseur de Lindlar) avait été remplacé par du palladium sur charbon.

- 1. Donner la structure des produits des réactions suivantes.
- 2. Pour la réaction 4, donner le mécanisme. Préciser si l'un des isomères est obtenu de façon majoritaire, en justifiant votre réponse.

2)
$$\begin{array}{c} 1) O_3 \\ \hline 2) Zn \\ \hline \end{array}$$
 2 produits

4)
$$KOH$$

$$\Delta \text{ (chauffage)} 2 \text{ produits isomères } (C_6H_{10})$$

Réaction 1	Structure des 2 stéréoisomères
Keaction 1	Structure des 2 stereorsorneres

Réaction 2) Structure des produits

Réaction 3) Structure

Réaction 4) Structure des 2 isomères

Mécanisme de la réaction 4)	
Un des isomères est-il obtenu de façon majoritaire ? Justifier.	