Licence Sciences de la Vie et de la Terre – L2 Chimie des Polyfonctionnels

CC - durée: 1h - Lundi 3 mai 2010

La calculatrice n'est pas autorisée. L'utilisation du téléphone portable est interdite.

Exercice 1

Compléter les équations suivantes (1 case = 1 composé organique ou inorganique).

	+ Br ₂ →	Br CH ₃ H H C ₂ H ₅	+	projection (de Newman
(<i>Z</i>)-but-2-ène	+ HOCl →		+		
	+ NaCN →	H CN Humin H CH ₃ CH ₃	+	Na	ıBr
	+ EtONa →		+		NaBr
Br H H CH ₃ CH ₃ CH ₃	+ KOH dilué →		+		
Br H H CH ₃ CH ₃	+ KOH concentré →		+		

Exercice 2 (20 min)

Donner la formule semi-développée des composés **A** à **I** pour la suite de réactions suivante. Préciser pour chaque réaction son type (substitution, addition, élimination, oxydation, réduction, acide-base, ...).

H-C≣C-H	1 éq NaNH ₂ →	A	Br → B H ₂	H_2 O H_2 SO $_4$ /HgSO $_4$ /Pd désactivé	C 1	
		G ← HB	Br F		∳ D	
		KCN	1)) BH ₃) H ₂ O ₂ /OH ⁻		Zn, HCl mmensen)
		Н	ı		E	
	(C	Ç ₆ H ₁₁ N)	(C ₅ H ₁₂	₂ O)	(C_5H_{12})	

Type:	Type:	Type:
A :	B:	C:
Type:	Type:	Type:
D:	E:	F:
Type:	Type:	Type:
G:	н:	I:

Licence Sciences de la Vie et de la Terre - L2 Chimie des Polyfonctionnels

CC - durée: 1h - Lundi 3 mai 2010

La calculatrice n'est pas autorisée. L'utilisation du téléphone portable est interdite.

ne prénentation dans espace Course = 05/1

Exercice 1

Compléter les équations suivantes (1 case = 1 composé organique ou inorganique).

$H \rightarrow C_{13}$ $C_{2}H_{5}$ H	+ Br ₂ →	CH ₃ H C ₂ H ₅	+	H CH ₃ Θ_t projection of	
(<i>Z</i>)-but-2-ène	+ HOCl →	HO CH3 H CP	+	H (CH ₃	OH CH₃ CH₃
H CH ₃ CH ₃ Bo	+ NaCN →	H CN Humin H CH ₃ CH ₃	+	Na	ıBr
CH ₃ CH ₃ Bo	+ EtONa →		+	EHOH	NaBr
Br H Human C ₂ H ₅ CH ₃ CH ₃	+ KOH dilué →	CH3 H H C ₂ H ₅	+	KΒn	
Br H Human C ₂ H ₅ CH ₃ CH ₃	+ KOH concentré →	CH_3 CH_3 C_2H_5	+	o,s KBn	9,5 H ₂ O

Donner la formule semi-développée des composés **A** à **I** pour la suite de réactions suivante. Préciser pour chaque réaction son type (substitution, addition, élimination, oxydation, réduction, acide-base, ...).

H-C=C-H
$$\xrightarrow{\text{1 eq NaNH}_2}$$
 A $\xrightarrow{\text{Br}}$ B $\xrightarrow{\text{H}_2\text{O}}$ C $\xrightarrow{\text{H}_2\text{No}_4/\text{HgSO}_4}$ C $\xrightarrow{\text{HBr}}$ F D $\xrightarrow{\text{KCN}}$ $\xrightarrow{\text{I}}$ BH $_3$ 2) H $_2\text{O}_2/\text{OH}^ \xrightarrow{\text{C}}$ (Clemmensen) H I E $\xrightarrow{\text{C}}$ (C $_5\text{H}_{12}\text{O}$) (C $_5\text{H}_{12}\text{O}$)

Type: Acide-Bane	Type: ≤ N	Type: Addition
A: H-CECIENO	B: H-C=C-CH CH3	C: CH ₂ =C CH(CH ₃) ₂
Type: Tautomenia	Type: Reduction	Type: aio-Addition
D: CH3-C-CH(CH3)2	E: CH3CH2CH(CH3)2	F: $C = C$ H H H
Type: Addition	Type: SN	Type: Addition
G: CH3-CH-CH(CH3)2 Bn	H: CH3-CH-CH(CH3)2 C N	I: CH2-CH2-CH(CH3)