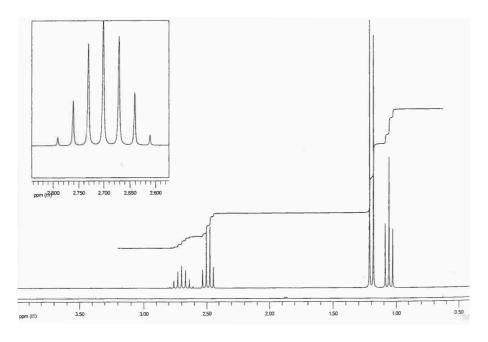
Licence Sciences et Techniques – L2 Techniques spectroscopiques (Chim4B)

CC - durée: 1h - Mardi 19 mars 2019

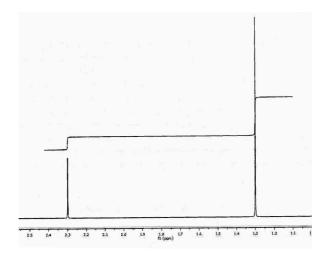
La calculatrice est autorisée. L'utilisation du téléphone portable est interdite. Document fourni : les tables de spectroscopie infrarouge – Répondre sur le sujet

Nom:	Prénom :


Exercice 1 (4 points)

Indiquer par une croix la bonne réponse.

	VRAI	FAUX
L'acétophénone (ou 1-phényléthanone) est caractérisé en UV-visible par deux bandes d'absorption à 245 et 285 nm respectivement. Etant donné que la transition $n \rightarrow \pi^*$ de la propanone est caractérisée par une bande d'absorption à 280 nm, ceci permet de conclure que la bande à 245 nm est à attribuer à une transition $\pi \rightarrow \pi^*$.		
La spectroscopie RMN 'H ne permet pas de faire des analyses quantitatives.		
Il est possible de différencier une amine primaire d'une amine tertiaire par spectroscopie infrarouge.		
La spectrométrie de masse permet de voir les 2 isotopes stables du fluor.		
La masse molaire du chlore est calculée en tenant compte de l'abondance isotopique et de la masse m/z des 2 isotopes du chlore.		
Si l'amas isotopique d'un composé dihalogéné a comme intensités relatives (1-2-1), alors le composé contient deux atomes de brome.		

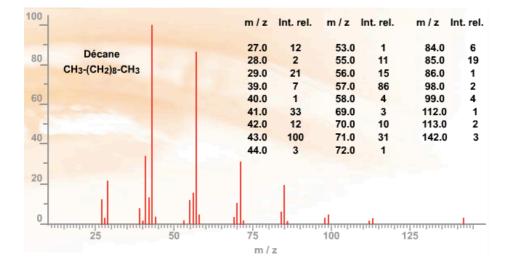

Exercice 2 (3 points)

Le spectre RMN 'H de la molécule **A** de formule brute C₆H₁₂O est donné ci-après. Interpréter le spectre (attribution et multiplicité des signaux) et donner la <u>formule semi-développée</u> de **A**.

Exercice 3 (3 points)

Le spectre RMN 'H d'un composé **B** <u>après addition d'une goutte d'eau lourde</u> dans le tube RMN est donné. Le composé **B** correspond à l'une des cinq formules semi-développées notées **1** à **5** ci-après.

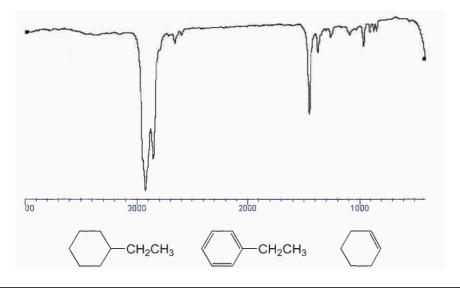
3.1. Parmi les 5 composés, quel(s) est(sont) celui(ceux) dont le spectre est différent après addition d'eau lourde ? Cocher la(les) bonne(s) réponse(s).

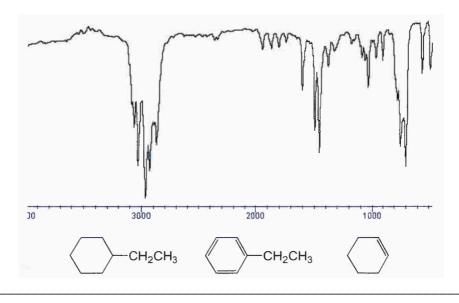

- 3.2. Ecrire l'équation bilan de la réaction qui a eu lieu dans le tube RMN :
- 3.3. Combien de signaux attendez-vous en RMN 'H en présence d'eau lourde pour les 5 composés ?

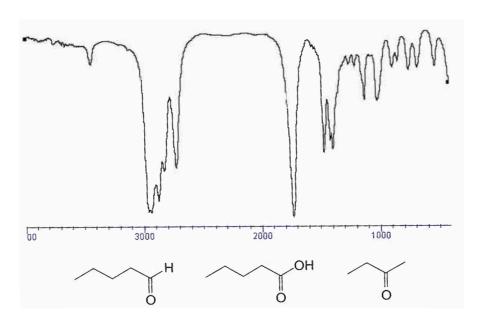
1:__ 2:__ 3:__ 4:__ 5:__

3.4. A quelle formule correspond **B**? \Box 1 \Box 2 \Box 3 \Box 4 \Box 5

Exercice 4 (4 points)

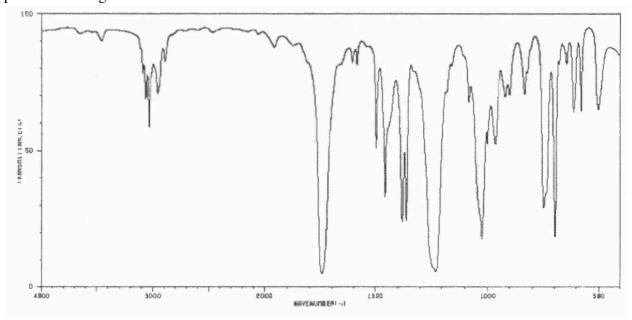

En spectrométrie de masse on obtient le spectre suivant pour la molécule de décane.




- Valeur m/z du pic de base :
- Valeur m/z du pic moléculaire M:
- Equation générale de la réaction d'ionisation du décane :
- A quelle espèce correspond le pic à m/z = 142?
- A quelle espèce correspond le pic à m/z = 57?
- Ecrire la réaction (1 étape) qui permet d'expliquer la formation du pic à m/z = 57 directement à partir de la molécule de décane ionisée ?

Exercice 5 (3 points)

Pour chaque spectre infrarouge suivant, entourer la molécule qui lui correspond. Justifier votre choix en indiquant par une croix sur chaque spectre la(les) bande(s) caractéristique(s) en précisant la vibration correspondante.



Exercice 6 (4 points)

Un composé C ne contenant que CHO et dérivé de l'acide éthanoïque, présente en spectrométrie de masse un pic M· à 150 et un pic à M+1 représentant 9,9 % du pic moléculaire. Son spectre infrarouge est donné ci-dessous.

Son spectre RMN 'H présente 3 pics : - singulet /3 : 1,95 ppm

singulet /2 : 5,00 ppmmultiplet /5 : 7,28 ppm

A partir de l'ensemble de ces informations,

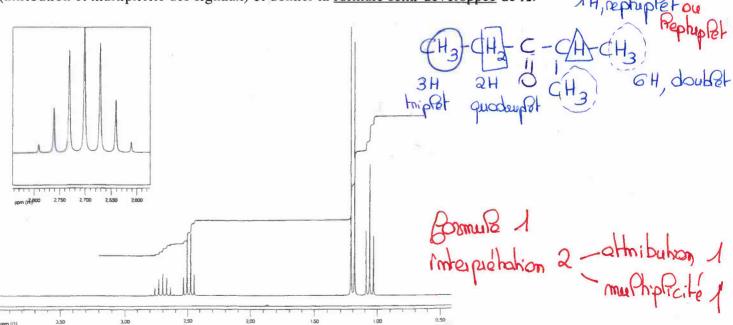
- donner la formule moléculaire de C (sans justifier) :
- donner la valeur du nombre d'insaturation (DBE) (sans justifier) :
- préciser sur le spectre infrarouge <u>au moins 4</u> bandes caractéristiques en précisant la vibration correspondante
- donner la formule demi développée de C (sans justifier) :

Licence Sciences et Techniques – L2 Techniques spectroscopiques (Chim4B)

CC - durée : 1h - Mardi 19 mars 2019

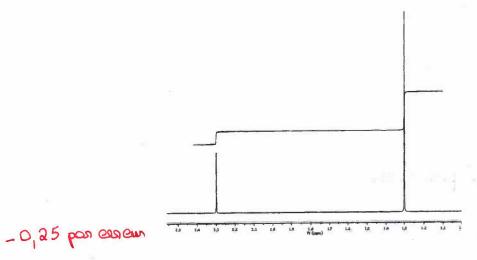
La calculatrice est autorisée. L'utilisation du téléphone portable est interdite. Document fourni : les tables de spectroscopie infrarouge – Répondre sur le sujet

Nom:	<u>Prénom :</u>


Exercice 1 (4 points) -0,5 pan esseun

Indiquer par une croix la bonne réponse.

	VRAI	FAUX
L'acétophénone (ou 1-phényléthanone) est caractérisé en UV-visible par deux bandes d'absorption à 245 et 285 nm respectivement. Etant donné que la transition $n \rightarrow \pi^*$ de la propanone est caractérisée par une bande d'absorption à 280 nm, ceci permet de conclure que la bande à 245 nm est à attribuer à une transition $\pi \rightarrow \pi^*$.	×	
La spectroscopie RMN ¹ H ne permet pas de faire des analyses quantitatives.		X
Il est possible de différencier une amine primaire d'une amine tertiaire par spectroscopie infrarouge.	X	
La spectrométrie de masse permet de voir les 2 isotopes stables du fluor.	- 5	×
La masse molaire du chlore est calculée en tenant compte de l'abondance isotopique et de la masse m/z des 2 isotopes du chlore.	X	
Si l'amas isotopique d'un composé dihalogéné a comme intensités relatives (1-2-1), alors le composé contient deux atomes de brome.	X	


Exercice 2 (3 points)

Le spectre RMN ¹H de la molécule \mathbf{A} de formule brute $C_6H_{12}O$ est donné ci-après. Interpréter le spectre (attribution et multiplicité des signaux) et donner la formule semi-développée de \mathbf{A} .

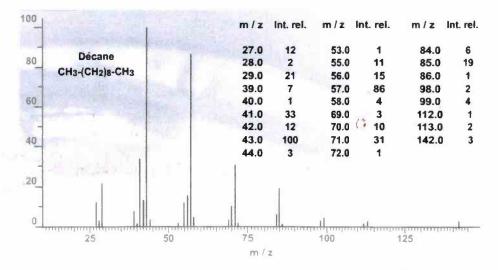
Exercice 3 (3 points)

Le spectre RMN ¹H d'un composé **B** <u>après addition d'une goutte d'eau lourde</u> dans le tube RMN est donné. Le composé **B** correspond à l'une des cinq formules semi-développées notées **1** à **5** ci-après.

3.1. Parmi les 5 composés, quel(s) est(sont) celui(ceux) dont le spectre est différent après addition d'eau lourde ? Cocher la(les) bonne(s) réponse(s).

3.2. Ecrire l'équation bilan de la réaction qui a eu lieu dans le tube RMN :

3.3. Combien de signaux attendez-vous en RMN ¹H en présence d'eau lourde pour les 5 composés ?

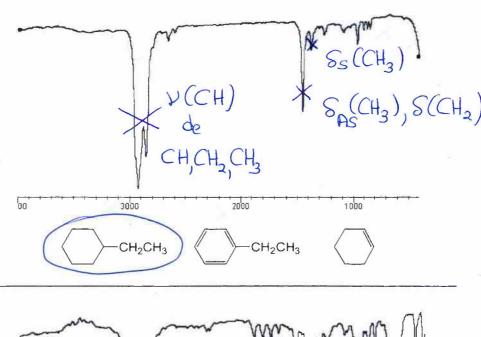

1: 3 2: 3 3: 2 4: 3 5: 3

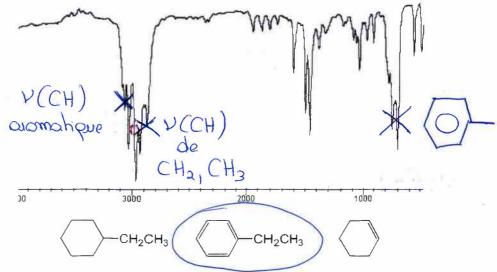
~ 125 par even

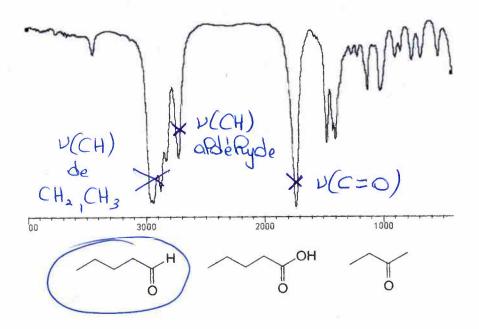
3.4. A quelle formule correspond **B**? \Box 1 \Box 2 \boxtimes 3 \Box 4 \Box 5

Exercice 4 (4 points)

En spectrométrie de masse on obtient le spectre suivant pour la molécule de décane.

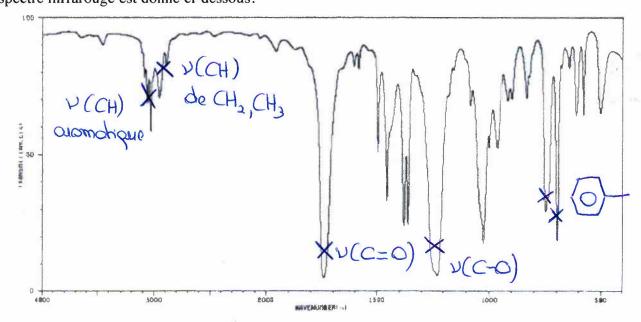



- $\frac{95}{5}$ Valeur m/z du pic de base : $\frac{43}{5}$
- 5 Valeur m/z du pic moléculaire M : 142
- Equation générale de la réaction d'ionisation du décane :


- 35 A quelle espèce correspond le pic à m/z = 142 ? $\begin{bmatrix} C_{10} H_{22} \end{bmatrix}$ +
 - A quelle espèce correspond le pic à m/z = 57? $\begin{bmatrix} C_4 H_9 \end{bmatrix}^+$
 - Ecrire la réaction (1 étape) qui permet d'expliquer la formation du pic à m/z = 57 directement à partir de la molécule de décane ionisée ?

Exercice 5 (3 points)

Pour chaque spectre infrarouge suivant, entourer la molécule qui lui correspond. Justifier votre choix en indiquant par une croix sur chaque spectre la(les) bande(s) caractéristique(s) en précisant la vibration correspondante.



Exercice 6 (4 points)

Un composé C ne contenant que CHO et dérivé de l'acide éthanoïque présente en spectrométrie de masse un pic M⁺ à 150 et un pic à M+1 représentant 9,9 % du pic moléculaire. Son spectre infrarouge est donné ci-dessous.

Son spectre RMN ¹H présente 3 pics : - singulet /3 : 1,95 ppm

- singulet /2 : 5,00 ppm

- multiplet /5 : 7,28 ppm

A partir de l'ensemble de ces informations,

- donner la formule moléculaire de C (sans justifier) : $C_2 H_1 O_2$

 $DBE = \frac{2 \times 9 - 10 + 2}{2}$

- donner la valeur du nombre d'insaturation (DBE) (sans justifier) : 📕 5
- préciser sur le spectre infrarouge <u>au moins 4</u> bandes caractéristiques en précisant la vibration correspondante (0,25 x 4)
- donner la formule demi développée de C (sans justifier) :