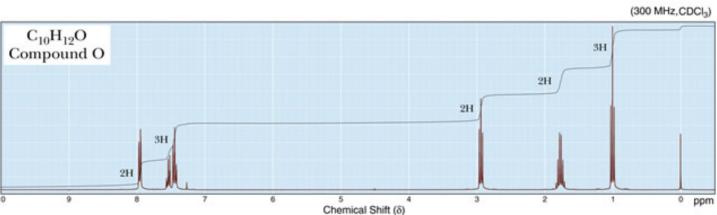
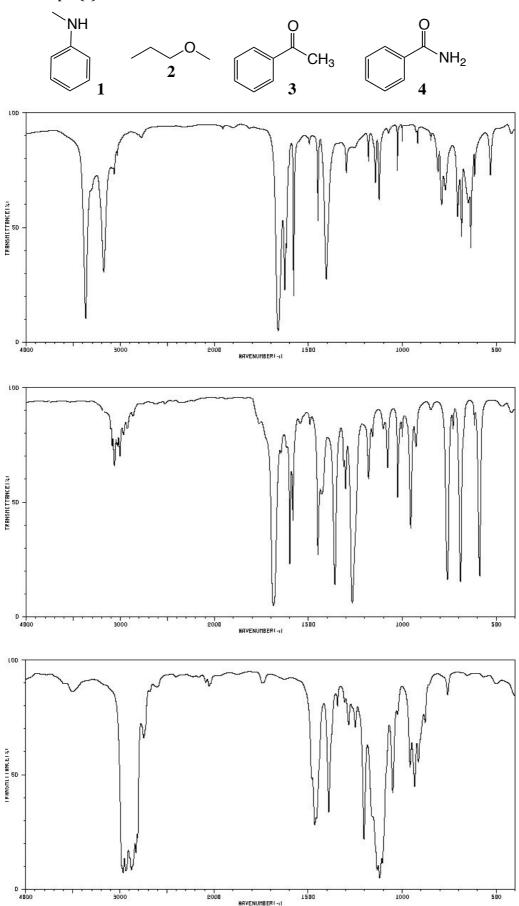

Licence Sciences et Techniques - L2 Techniques spectroscopiques (ChOr42)

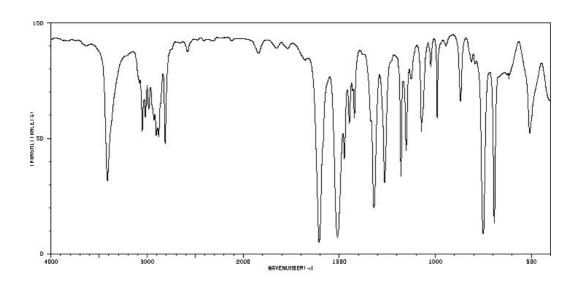

CC - durée: 1h - Jeudi 24 mars 2016

La calculatrice n'est pas autorisée. L'utilisation du téléphone portable est interdite. Document fourni : les tables de spectroscopie infrarouge/RMN - Répondre sur le sujet

Nom:			Prénom :				
Exercice 1 Attribuer à ch	aque donnée RMN ¹ F	I le composé cort	respondant (cocher la bonne	e réponse).			
1.1) RMN ¹H : δ 1,19 ppm (singulet), 3,65 ppm (singulet)							
(CH ₃) ₃ C-OH	CH_3 -O- $CH(CH_3)_2$	CH ₃ CH ₂ CH ₂ CH ₂	OH CH₃CH₂CH(CH₃)OH	CH ₃ CH ₂ CH ₂ -O-CH ₃			
1.2) RMN ¹H : δ 0,91 ppm (doublet), 2,15 ppm (multiplet), 3,34 (doublet)							
(CH ₃) ₃ C-Cl	Cl-CH ₂ -CH(CH ₃) ₂	CH ₃ CH ₂ CH(CH ₃	3)Cl CH ₃ CH ₂ CH ₂ CH ₂ Cl	CH ₃ CH ₂ CH(CH ₃)CH ₂ C			
1.3) RMN ¹H : δ 1,25 ppm (triplet), 2,60 ppm (quadruplet), 7,30 (multiplet)							
1.4) RMN ¹ H : δ 1,25 (doublet), 3,03 (sextuplet), 3,65 (singulet), 3,94 (doublet), 7.31 (multiplet)							
		[

Soit un composé **0** de formule brute C₁₀H₁₂O caractérisé par le spectre infrarouge et RMN ¹H suivant :

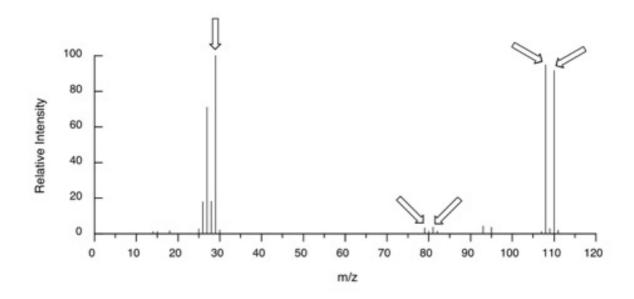



- Calculer le nombre d'insaturations (DBE) (donner le calcul) :

- Interpréter les données infrarouge :

- Interpréter le spectre RMN ¹H (attribution et multiplicité des signaux) puis, à partir de l'ensemble des données, donner la formule semi-développée du composé **0** :

Attribuer à chacun des composés ${\bf 1}$ à ${\bf 4}$ son spectre infrarouge en indiquant sur chaque spectre la(les) bande(s) caractéristique(s).



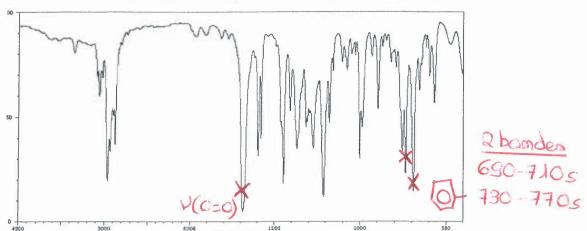

Soit le spectre de masse d'un halogénoalcane simple de formule brute C_xH_yX obtenu en bombardement électronique (EI) (m/z = rapport masse sur charge en uma).

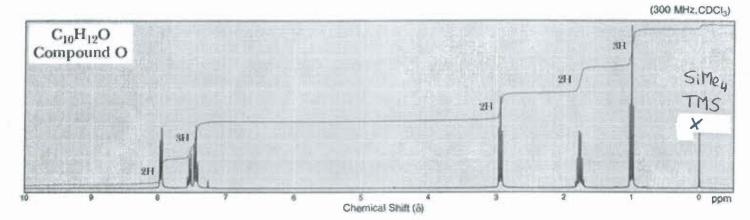
Données : masses molaires atomiques en g.mol⁻¹ : F : 19 ; Cl : 35,453 (2 isotopes 100/32,5) ; Br:80 (2 isotopes 100/98) ; I:127.

- a) Quelle est l'équation générale de la réaction d'ionisation?
- b) Quelle est la nature de l'halogène dans ce composé ? Justifier votre réponse.
- c) Compléter le spectre de masse en indiquant à côté de chaque flèche l'espèce correspondante.

Soit un composé de formule brute $C_5H_{12}O$ et caractérisé par les spectres RMN 1H et ^{13}C ci-dessous. Quelle est la formule semi-développée du composé ? Justifier votre réponse en attribuant les pics observés en RMN 1H et ^{13}C non découplé du proton. Expliquer l'allure des pics observés sur ces deux spectres.

Licence Sciences et Techniques - L2 Techniques spectroscopiques (ChOr42)

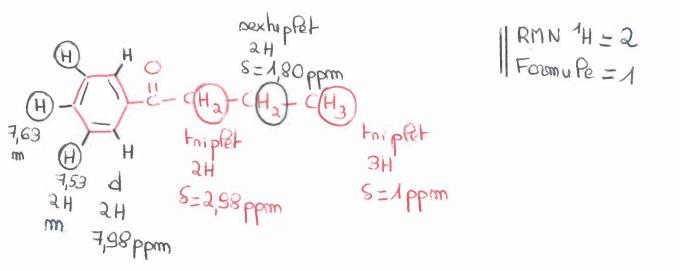

CC - durée: 1h - Jeudi 24 mars 2016


La calculatrice n'est pas autorisée. L'utilisation du téléphone portable est interdite. Document fourni : les tables de spectroscopie infrarouge/RMN – Répondre sur le sujet

Nom:			Prénom :				
Exercice 1 /3 O 75 = 1 bonne ne ponce Attribuer à chaque donnée RMN ¹ H le composé correspondant (cocher la bonne réponse).							
1.1) RMN ¹H : δ 1,19 ppm (singulet), 3,65 ppm (singulet)							
×							
$(CH_3)_3C-OH$	CH_3 -O- $CH(CH_3)_2$	CH ₃ CH ₂ CH ₂ CH ₂ O	H CH ₃ CH ₂ CH(CH ₃)OH	CH ₃ CH ₂ CH ₂ -O-CH ₃			
1.2) RMN ¹H : δ 0,91 ppm (doublet), 2,15 ppm (multiplet), 3,34 (doublet)							
	×						
(CH ₃) ₃ C-Cl	Cl-CH ₂ -CH(CH ₃) ₂	CH ₃ CH ₂ CH(CH ₃)	Cl CH ₃ CH ₂ CH ₂ CH ₂ Cl	CH ₃ CH ₂ CH(CH ₃)CH ₂ C			
1.3) RMN ¹ H : δ 1,25 ppm (triplet), 2,60 ppm (quadruplet), 7,30 (multiplet)							
1.4) RMN ¹H : δ 1,25 (doublet), 3,03 (sextuplet), 3,65 (singulet), 3,94 (doublet), 7.31 (multiplet)							
×							

Exercice 2 /5

Soit un composé ${\bf 0}$ de formule brute $C_{10}H_{12}O$ caractérisé par le spectre infrarouge et RMN 1H suivant :

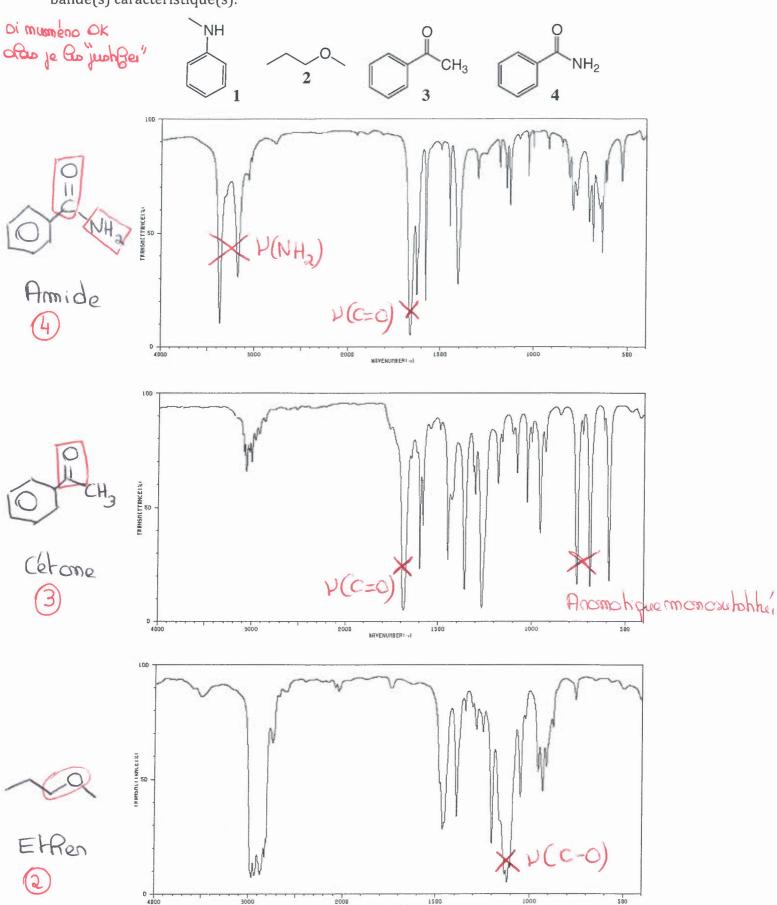

- Calculer le nombre d'insaturations (DBE) (donner le calcul) :

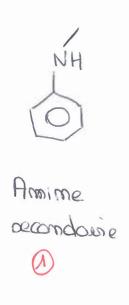
DBE =
$$\frac{2\times10-12+2}{2} = 5 = 1$$
 cycle assomotique (4) + 1 double Praison

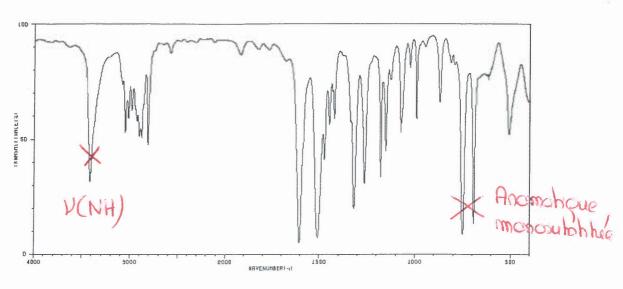
- Interpréter les données infrarouge :

V(c=0) à emunon 1700 cm-1 + anomatique monoxibhtée (gplus Pout)

- Interpréter le spectre RMN ¹H (attribution et multiplicité des signaux) puis, à partir de l'ensemble des données, donner la formule semi-développée du composé **0** :




Athibution = 9,5 x 4 + Exprahion = 9,5 x 4

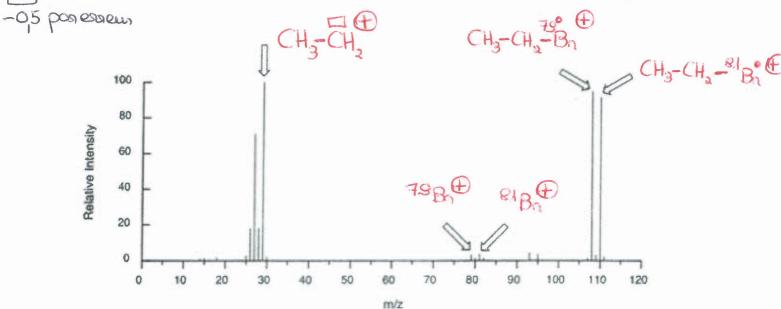

Exercice 3

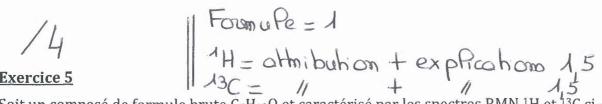
Attribuer à chacun des composés 1 à 4 son spectre infrarouge en indiquant sur chaque spectre la(les) bande(s) caractéristique(s).

NAVENUMBER 1-1

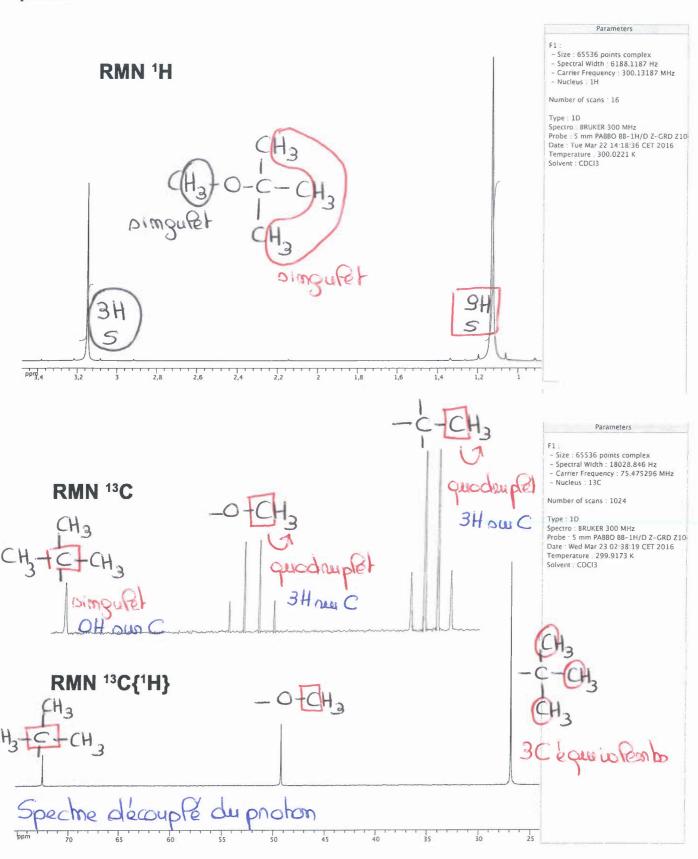
Exercice 4 / 4

Soit le spectre de masse d'un halogénoalcane simple de formule brute C_xH_yX obtenu en bombardement électronique (EI) (m/z = rapport masse sur charge en uma).


Données : masses molaires atomiques en g.mol⁻¹ : F : 19 ; Cl : 35,453 (2 isotopes 100/32,5) ; Br: 80 (2 isotopes 100/98) ; I: 127.


a) Quelle est l'équation générale de la réaction d'ionisation? 95 α point manquant $M+e^- \rightarrow M^{+e} + 2e^-$

b) Quelle est la nature de l'halogène dans ce composé ? Justifier votre réponse.


Composition isotopique du Bn => 79 Bn 100%) 2 pies environ 81 Bn 98%) identiques

c) Compléter le spectre de masse en indiquant à côté de chaque flèche l'espèce correspondante.

Soit un composé de formule brute C₅H₁₂O et caractérisé par les spectres RMN ¹H et ¹³C ci-dessous. Quelle est la formule semi-développée du composé ? Justifier votre réponse en attribuant les pics observés en RMN ¹H et ¹³C non découplé du proton. Expliquer l'allure des pics observés sur ces deux spectres.

